U.S. Department of Energy

Lawrence
Livermore
National

S

Laboratory

Preprint
UCRL-JC-136117

WebDB Component
Builder — Lessons Learned

C.M. Macedo

This article was submitted to
International Oracle User’s Group America’s, Anaheim, CA,
May 7-11, 2000

February 15, 200

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

WebDB Component Builder — Lessons Learned

Charalynn M. Macedo

Lawrence Livermore National Laboratory
UCRL-JC-136117

Presented at IOIUG-A 2000
Anaheim, CA
May 7-11, 2000

WebDB Component Builder — Lessons Learned

Charalynn Macedo
Lawrence Livermore National Laboratory

Introduction

Oracle WebDB is the easiest way to produce web enabled lightweight and enterprise-
ceniric applications. This concept from Oracle has tantalized our taste for simplistic web
development by using a purely web based tool that lives nowhere else but in the
database! The use of on-line wizards, templates, and query builders, which produces
PL/SQL behind the curtains, can be used straight “out of the box” by both novice and
seasoned developers.

The topic of this presentation will introduce lessons learned by developing and deploying
applications built using the WebDB Component Builder in conjunction with custom
PL/SQL code to empower a hybrid application. There are two kinds of WebDB
components: those that display data to end users via reporting, and those that let end users
update data in the database via entry forms. The presentation will also discuss various

methods within the Component Builder to enhance the applications pushed to the
desktop.

The demonstrated example is an application entitled HOME (Helping Other’s More
Effectively) that was built to manage a yearly United Way Campaign effort. Our task was
to build an end to end application which could manage approximately 900 non-profit
agencies, an average of 4,100 individual contributions, and $1.2 million dollars.

Using WebDB, the shell of the application was put together in a matter of a few weeks.
(Manager’s love this!) However, we did encounter some hurdles that WebDB, in it’s
stage of infancy (v2.0), could not solve for us directly. Together with custom PL/SQL,
WebDB’s Component Builder became a powerful tool that enabled us to produce a very
flexible hybrid application.

Page 1 of 10

Lesson One — Use of Stored Source:

WebDB on Stored Source

Oracle WebDB provides multiple methods for creating forms and reports, however, when
more detail or robust manipulation of data is required, the WebDB wizardry or basic SQL
query methods will not suffice. The developer must return to the trenches of coding by
hand; however, not all is lost! Oracle WebDB provides a smooth solution, by providing a
means to build the interface between your stored source and your end user. This can be
extremely useful for accepting input parameters from a user to either manipulate data on
the back end, simply display data back to the user, or pass these parameters to another
WebDB component for further processing.

A good example of a component built on stored source was the need for a robust report
which involved several nested cursors and some basic mathematics. The stored procedure
accepted two parameters from the user and displayed the results back to the user via
PL/SQL-HTML. The interface was built using the Form Builder.

Finish I Cancel |

Argument Formatting and Validation

P _UMB_CD
FacelArkaI 3 Size [0 =
Display As IComanox vl Width |30 ;
LOV [LI.PICK_HOME_AGENCY @ Height |1
E Default Max
Al v] Value | Length 2%
Add Updatable [Yes =] th
Remove I R
Rename I MandatoxﬂNu]' Sptml1
Vnh'F;:lt:;-NU Selection- =l g‘::l‘l‘es 'l
Form - Format
Validate |~No Selection- J Mask[!

Figure 1. Form Building on a stored procedure. The two arguments shown here, are the two variables
named as the input parameters within the stored procedure.

Create or Replace Procedure LI_AGENCY_DTL_BY_EMP_PR (
P_uw_cd in number default null,
P_umb_cd in number default null)

Page 2 of 10

Complete the Form Builder wizard for GUI requirements and the final result is the input
form, which upon submission calls the stored source. The look and feel of the output
generated by the custom PL/SQL code is exactly the same as if WebDB had generated
the final output. This is possible by cutting and pasting the HTML from the WebDB
template directly into your custom code. The result of the hybrid is absolutely transparent
to the user.

HOME Campaign

1999 Agency Detail By Employee

This report will be provided to the individual Agencies as a list of employees who contributed to their organization.
To run the report for all agencies, leave the following input parameters blank.
Otherwise, you may run the report by Agency or by Umbrella Agency.

Note: This report runs for olosed botohes only and displays a fofal sum for "anonymous™ contributions for those smployves who wish not fo be identified

_RunRepont | Reset |
Agency [« =]
Umbrella Agency [|

Contributions to Date: 120232278

Figure 2. WebDB Form built on a stored procedure.

Note: One drawback to having multiple WebDB components built on stored source is
compiling! The stored source must obviously be compiled and in a valid state for the
WebDB component to compile. Modifications to these components can be tricky. Any
change to one side or the other invalidates both objects in the database.

Page 3 of 10

Lesson Two — Master Detail:

WebDB Forms and Reports

Another good example of a component built on stored source was a more complicated
need to solve a master detail relationship. It could not be accomplished using the WebDB
canned Master Detail Form Builder due to the fact we needed to join multiple tables.
Below is the relationship we needed to satisfy.

LLNL_UPD_DT

HOME_AGENCY_ID_NO
HOME_AGENCY_WRITE_IN_CD
HOME_AGENCY_UNITED_WAY_CD
HOME_AGENCY_UMBRELLA_CD
HOME_AGENCY_NAM
HOME_AGENCY_ADDR_LN_1
HOME_AGENCY_ADDR_LN_2
HOME_AGENCY_CITY_NAM
HOME_AGENCY_STATE_CD
HOME_AGENCY_ZIP_CD
HOME_AGENCY_PHONE_AREA_CD
HOME_AGENCY_PHONE_NO
HOME_AGENCY_PHONE_EXTN_NO
HOME_AGENCY_CNTC_PT_NAM
HOME_AGENCY_UMBRELLA_TYPE_CD
HOME_AGENCY_PAY_DED_CD
PER_INTR_NO_INS_BY
LLNL_INS_DT
HOME_AGENCY_EMAIL_NAM
HOME_AGENCY_FAX_AREA_CD
HOME_AGENCY_FAX_NO
PER_INTR_NO_UPD_BY

A HOME_CNTRB_TYPE_CD
A HOME_CNTRB_TYPE_DESC
PER_INTR_NO_INS_BY

00 LLNLINS_DT

% PER_INTR_NO_UPD_BY

@ LiyL_UPD_DT

—HOME_CNTRB_SENS _RK3

e e

* 7y
* %
* 7
X sy
* 7
* 7
* @
* i
* @
* A

HOME_BATCH_ID_NO
HOME_BATCH_CASH_TOT_AMT
HOME_BATCH_CHECK_TOT_AMT
HOME_BATCH_PAY_DED_TYPE_AMT
HOME_BATCH_ASSETS_TOT_AMT
PER_INTR_NO_INS_BY
LLNL_INS_DT
PER_INTR_NO_UPD_BY
LLNL_UPD_DT
HOME_BATCH_STAT_CD

o}

*
HOME_CNTRB_SENS_EK1 %
4*%

¥ %%X%X00C0CO0*

RB_SEMS_F

_[IHOME_CNTRB_SENS
213

eu|®
HOME_CNTRB_ID_NO
PER_ID_NO_CNTRB_BY
HOME_AGENCY_ID_NO
HOME_BATCH_ID_NO
HOME_CNTRB_TYPE_CD
HOME_CNTRB_ONE_TIME _AMT
HOME_CNTRE_MO_DED_AMT
HOME_CNTRB_YR_DED_AMT
HOME_CNTRB_CHECK_NO
PER_INTR_NO_INS_BY
LLNL_INS_DT
PER_INTR_NO_UPD_BY
LLNL_UPD_DT

BiBFF## s iy

In this example, the user is required to enter an employee id and batch number in order to
enter one or more contributions. A small procedure was written which accepts two
parameters and then calls the next WebDB component passing the values in a PL/SQL
table. WebDB passes values into a PL/SQL table by name/value pairs. The procedure
below accepts two parameters through a WebDB form interface (Figure 3). It then calls
another WebDB form passing the same values that are required in order to create the
detail element. The form shown in Figure 4 doesn’t actually display these values but
accepts them as part of the insert statement into the base table the form is built on.

Page 4 of 10

procedure home_call_contrib_form pr (

p_batch in varchar2,
p_empno in varchar2 default null
)

is

begin

1i.1i_home_contrb_form_pgl.show (
p_request => null,
p_arg_names => webdb.wwv_standard_util.string_to_table2 (
"HOME_BATCH_ID_NO:PER_ID NO_CNTRB_BY'),
p_arg_values => webdb.wwv_standard_util.string_to_table2 (
p_batch||’:'||upper (p_empno)));
end home_call_contrib_form_pr;

HOME Campaign

1999 Select Batch and Employee Number

Please identify which batch number you will be processing.
If the contribution is anonymous leave the employee number field blank

Add Contribution | Reset |

Enter Batch # [BATCH. 8 Cash: 300 Check: 50 Pay Ded: 330 Assets: 0 =]
Employee # [705424

Figure 3. WebDB form built on procedure above serving as the Master.

Agency [o =] Tope [Check = § Per l— X I_- One-Time G;?*
12 0.

Month Amount
Do not release employee info to tax-exempt oraganization: € Yes
& No

Add Contribution ’

Figure 4. WebDB form called by procedure above serving as the Detail. This form is built on the base table
HOME_CNTRB_SENS. Note: Batch number and employee id are hidden fields.

Note: Passing parameters into the WebDB PL/SQL table shown above, provides the
ability to retrieve those same values later during processing. Below is the example to
retrieve the HOME_BATCH_ID_NO and assign it to a variable. Remember that this
table is only available in memory for this piece of PL/SQL. Once you hit the ‘END;’ of
your PL/SQL block the information contained within is no longer addressable.

x varchar2(100);

x := WEBDB.wwv_name_value.get_string(
I_arg_names,
1_arg_values,
'HOME_BATCH_ID_NO");

Page 5 of 10

Lesson Three — Empower With Multiple Components

WebDB — “Advanced PL/SQL Tab”

Within the Form and Report Builder exists the “Advanced PL/SQL Tab”. This tab
provides the ability to significantly add value to the functionality and flexibility of your
applications. A good example was the requirement to have multiple data elements exist
on one form. Using the “Advanced PL/SQL” option, we were able to display a variety of
data using stored procedures, other WebDb components, and display buttons based on a
user’s privilege in order to enhance the form.

HOME Campaign
1999 PP" Employee Pledge Form
A EmpID: 705424 Name: MACEDO, CHARALYNN M L-Code: 654 Phone Extm: 44504
B Agency Igg, _‘j Type |Chsck _-J SPeri)C] One-Time Check
Month 12 Amount No.
Do not release employee info to tax-exempt oraganization. € Yes
& No
Add Contribution ’
C NextEmployes | AddAgency | AddWiteln |
Agency Auoncycml.knbro_lh Code Umbrella Name Cash Checks Payroll Deds Assets
D MALLEYHUMANE SOCETY | 6150 | S
TRLVALLEY ANIMAL RESCUEINC.| 6145)
Page Sum 120 0
Total Sum e A
E Row(s) 1-2
Batch Totals for Batch #9
Cash Check Pay Ded Assets
Control Totals: 300.00 50.00 330.00 .00
Entered: 100.00 300 00 300.00 .00
Contributions to Date: 113000

Figure 5. WebDB Form with multiple components

Taking a look at the “Advanced PL/SQL Tab” you can match the cells with the sections
of the form above. You can see that the form above is actually 6 different components in
all. Section ‘B’ is the only section germane to this base WebDB form.

Each cell shown below will accept PL/SQL code that runs at different points during the

execution of the HTML code generated by WebDB. It is flexible enough to embed new
code, call existing stored source, or call existing WebDB components.

Page 6 of 10

Finigh | Cancel

H

Advanced PLISQL code
Enter the PL/SQL code you would ke to execute ...
... before displaying the page.
htp.p('<center>'); ;]
-
... before displaying the header.
declare A
A. PL/SQL Procedure x varchar2 (100) ;
begin
x := VEBDB.wwv_name value.get string(LI
... after displaymg the footer,
C. Buttons declare f]
D. WebDB Report ¥ varchar2 (100);
E. PL/SQL Procedure ¥ varcharz (100);
lbegin LI
... after displaying the page.
-

Figure 6. Advanced PL/SQL Tab within the Forms and
Reports Component Builders

Note: When using multiple components on one form we encounter a scenario where the
same WebDB component is called multiple times to accept multiple contributions. This
became a nightmare during compiling final code into production. The contribution form
(detail) above is called by the master which is built on stored source. In order for this to
compile, the package spec of the master WebDB component must exist before the detail
WebDB component can compile. Lastly, the stored source that the master WebDB
component was built from must be compiled. Are you confused? This set up can be a
major drawback and is not recommended when using this many components.

Page 7 of 10

Lesson Four — Real Time Data:

WebDB - The <ORACLE> Tag

Oracle WebDB introduces the concept of an <ORACLE> html tag. This tag allows the
developer to build a dynamic flow of information into a static html environment.
Between the open and close tags the developer can build a SQL query or PL/SQL block
that executes in the database to retrieve dynamic data and display it. This tab type
effectively operates the same as server-side includes of the old .shtml model.

In the HOME application we chose to display a “real time” running total in the footer of
the template which was displayed on every page. Every time the html page is painted,
the code embedded between the <ORACLE> tag is executed. Another good use of this
tag in our application was the restriction of links to a user by privilege. A simple
procedure was written to validate the user’s db role and painted the hypertext links
accordingly.

Contributions to Date: 113000

Figure 7. Footer with dynamically created links and real time data.

Note: Be cautious of performance when embedding a PL/SQL block within the
<ORACLE> tag. We ran into a few performance problems when using multiple tags
within one template.

Lesson Five — Reusability:

WebDB — Shared Components

Oracle WebDB offers a variety of shared components that satisfy the need for
“Reusability”. The most common elements such as List of Values (LOV), Links, and
Interface Templates are great time savers. Build once and use or re-use multiple times!

Interface Templates can be a flexible enhancement to any application by using more than
one. One possibility is to build menus on one template and content pages on another. This
allows you to customize the header, footer, and background options throughout your
application, while at the same time providing a common look and feel. Our requirement
was to have one standard template with background graphics for all pages that contained
menus, and another standard template that contained the application forms and reports.

Another good example of multiple templates is the ability to create and use a blank
template. We received a request to display a graphical chart on the same page as a tabular
report. Notice in Figure 8 below that the bar chart was built using the WebDB Chart
Wizard and placing it on a blank template. This provides the ability to emulate a stacked
environment which is transparent to the user.

Page 8 of 10

HOME Campaign
1999

Contributions By Type

Check | sueom30] 2153
;Pay_roEDedacﬁon [593_5.329.43 4396
Row(s)1-4
BAR CHART
Appreciated Assets | ' $55.00
Cash | $900.00
Check w— $216,038.30
Payroll Deduction ee——— 4985 329.48
Row(s) 1-4
Contributions to Date: 1202322.78

Figure 8. Example of blank template when viewing multiple components on the same page.

List of Values (LOV) is another re-usable feature in WebDB. A LOV can be built on a
static list of values or a SQL statement. The bonus here is the display format options such
as combo box, radio buttons, multiple selects, check boxes, etc.. One draw back is that
WebDB only allows for one column to be displayed and one column to be passed as the
value. Our requirement was to display the agency name and the corresponding United
Way agency code since there may be two agencies with very similar names.

Edit Dynamic List of Values

To delete a List of Values, leave the Name entry field blank.

Edit this List of Values:
Owning Schema [U +]
Name [PICK_HOME_AGENCY
Default Display Formats:
Default Format | Check box -

Show Null Value |Yes ~

Enter SQL Query:

select SUBSTR(HOME_AGENCY NAM, 1,30)||' - '||HOME_AGENCY UNITED WAY CD, -]
HOME_AGENCY_ID_NO

from LI.HOME_AGENCY

order by HOME_AGENCY NAM desc

X
| Syntax:
| select [display column], [return column] Apply Changes I

| from [table]

Figure 9. Example of a Dynamic LOV displaying two data elements.

Page 9 of 10

Conclusion

The main lesson to be learned is that the WebDB Component Builder in it’s own right is
a very useful tool. The easy-to-use wizardry of WebDB and the sophistication that
custom PL/SQL code can offer, can become a very powerful way to enhance application
development. There is never just one way to approach or solve a problem. Don't let
yourself be confined to the tool itself. Breaking out of the box can be a very positive
thing!

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Page 10 of 10

